سیستم تشخیص نفوذ مبتنی بر مدل مخفی مارکوف
thesis
- دانشگاه امام رضا علیه اسلام - دانشکده مهندسی کامپیوتر
- author جمال کریمیان
- adviser مجید وفایی جهان
- publication year 1393
abstract
یکی از اساسی¬ترین معیارهای یک سیستم تشخیص نفوذ ایده آل، به دست آوردن نرخ مثبت کاذب پایین و نرخ تشخیص بالا است. سیستم¬های تشخیص نفوذ مبتنی بر امضا در تشخیص حملات جدید ناتوان می¬باشند و امروزه سیستم های مبتنی بر ناهنجاری استفاده می¬شوند.مهم¬ترین پارامتر در این سیستم ها نرخ مثبت کاذب است که هرچه قدر پایین باشد، سیستم در شناسایی حملات منعطف¬تر عمل می¬کند. هدف از ارائه این پژوهش، بهبود این معیارها تا حد ممکن است به طوری که نسبت به سیستم¬های پیشنهادی گذشته عملکرد بهتری داشته باشد. سیستم پیشنهادی ترکیبی از روش تشخیص مبتنی بر ناهنجاری و روش تشخیص مبتنی بر امضاء می¬باشد و دارای دو بخش تشخیص وجود حمله و تشخیص نوع حمله است ،به ترتیب در هر بخش از روش مبتنی بر ناهنجاری و مبتنی بر امضاء استفاده می¬شود. در این سیستم به کمک استفاده از چندین مدل مخفی مارکوف که به شکل قانونمند باهم همکاری می¬کنند عمل تشخیص به وسیله تعیین آستانه با توجه به ساختارهای نمونه رفتارهای عادی انجام می¬شود.پس از انجام آزمایش ها و ارزیابی توسط سه آزمون دقت، فراخوانی و f1-measure بر روی مجموعه داده firefox که از اجرای هفت نوع برنامه بر روی سیستم¬عامل linux بوجود¬آمده مشاهده شد که سیستم پیشنهادی جدید از نرخ تشخیص بالایی در حدود 100 درصد و نرخ مثبت کاذب 0.3 درصد برخوردار می¬باشد.
similar resources
سیستم تشخیص نفوذ مبتنی بر مدل فازی مخفی مارکوف
در این پژوهش کوشش شده است سیستم تشخیص نفوذی برای ترافیک انتقالی شبکه ارائه شود که با داشتن نرخ تشخیص حمله ی بالا، به نرخ مثبت کاذب پایینی دست یابد. این سیستم با نظارت بر ترافیک شبکه، به تشخیص ناهنجاری¬ها می پردازد. بدین منظور ویژگی¬های استخراج شده از یک ترافیک شبکه به وسیله ی تعدادی hmm، تحت عنوان یک گروه دسته بندی کننده، مدل سازی می شود. سپس با ادغام خروجی های حاصل از hmm های درون یک گروه، مقد...
تشخیص نفوذ مبتنی بر مدلهای مخفی مارکوف: روشها، کاربردها و چالشها
امروزه، با توجه به گسترش استفاده از شبکه اینترنت، امنیت سیستمهای نرمافزاری بهعنوان یکی از مهمترین مؤلفههای ضروری در کیفیت خدمات فنآوری اطلاعات بهحساب میآید. علاوه بر راهکارهای امنیتی سنتی نظیر رمزنگاری، دیواره آتش و مکانیزمهای کنترل دسترسی در سیستمهای نرمافزاری، استفاده از سیستمهای تشخیص نفوذ، امری ضروری و انکارناپذیر است. تاکنون روشهای زیادی برای تشخیص نفوذهای احتمالی در سیستمهای...
full textتشخیص نفوذ شبکه با استفاده از رویکرد ترکیبی مدل مخفی مارکوف و یادگیری ماشین مفرط
با رشد فناوری اطلاعات، امنیت شبکه بهعنوان یکی از مباحث چالشبرانگیز مطرح است. تکنیکهای تشخیص نفوذ مبتنی بر ناهنجاری یک فناوری ارزشمند برای حفاظت از شبکهها در برابر فعالیتهای مخرب است. در این مقاله رویکردی جدید مبتنی بر مدل مخفی مارکوف (HMM) و ماشین یادگیری مفرط (ELM) جهت تشخیص نفوذ ارائه شده است. در مدل پیشنهادی، دادههایی که از ترافیک شبکه جمعآوری شدهاند، ابتدا پیشپردازش میشوند. سپس دن...
full textچگونگی تشخیص چرخۀ حیات فناوری در حوزۀ آندوسکوپی بر اساس مدل مخفی مارکوف
هدف: شناسایی چگونگی تشخیص چرخۀ حیات فناوری در حوزۀ آندوسکوپی با استفاده از دادههای پروانههای ثبت اختراع و مدل مخفی مارکوف. روش/رویکرد پژوهش: این پژوهش از نظر هدف کاربردی و از نظر نوع اکتشافی است. جامعه این پژوهش را همۀ پروانههای ثبت اختراع در حوزۀ آندوسکوپی که از سال 1976 تا 2015 در پایگاه پروانههای ثبت اختراع آمریکا منتشر شدهاند، تشکیل میدهد که با...
full textپیشبینی روند قیمت سهام در بورس ایران مبتنی بر ترکیب شبکههای بیزین و مدل مخفی مارکوف
رفتار سهام و روند تغییرات آن یکی از پیچیده ترین مکانیزمهایی است که همواره مورد توجه محققان میباشد. بورس تحت تاثیر عوامل مختلف بیرونی و درونی قرار دارد. عوامل تاثیرگذار بیرونی مانند عوامل سیاسی و اجتماعی قابلیت اندازهگیری ندارند، به همین جهت برای پیشبینی روند بورس، باید بر روی تاثیر عوامل درونی تمرکز نمود. در این پژوهش سیستم ترکیبی مبتنی بر شبکههای بیزین و مدل مخفی مارکوف، جهت پیشبینی روند...
full textMy Resources
document type: thesis
دانشگاه امام رضا علیه اسلام - دانشکده مهندسی کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023